Microbial quality of salted dried fish sold near Caspian Sea, Iran

Barat ali Zarei Yam1, Morteza Khomeiri2, Sahar Amirkhani3, Maryam Sabagh3

1Msc of Food Science and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, 49138-15739, Iran,
2Department of Food Science and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
3Bachelor student of food science and technology, Department of Food Science and Technology at Baharan Institute of higher education

*Corresponding author email: alizarei1662@gmail.com
Accepted 21 December, 2015

ABSTRACT

Moisture, pH, NaCl and microbial counts of salted dried fish at Golestan Province near Caspian Sea, Iran, were studied. Results showed that moisture, pH and NaCl of samples were ranged from %12.8-44.4, 5.9-6.07 and %4.16-5.36 respectively. Total count, Yeast and molds, Staphylococcus aureus, Enterobacteriaceae, Aerobic spores, Anaerobic spores (clostridia spp), Psychrophilic bacteria, Lactic acid bacteria, Halophilic microorganisms, Salmonella and Shigella count were ranged from 2.2×10³-3.2×10⁴, 0-6×10², 0-9.8×10², 0-6.7×10¹, 3.8×10¹ - 6× 10², 2×10¹ - 5×10², 1×10¹ - 4×10¹, 0-4×10¹, 4×10² - 3×10³, 0-2× 10¹ and 0.4× 10¹ - 1.2×10² respectively. Decrease the moisture and pH of samples leaded to decrease the microbial counts but the high content of NaCl in salted fishes induced halophillic bacteria, hence halophillic bacteria count were high. Assessment of the microbiological quality of salted dried fish in the Goestan Province, Iran, showed that the conditions for their production and sale were poor and suggested that producers and vendors follow good hygiene practices. Some pathogens such as Staphylococcus aureus and Salmonella spp. in the samples are harmful, also anaerobic spores could be spores of pathogenic Clostridium botulinum type E or Clostridium perfringens. It is therefore important that actions be taken to improve the sanitation.

Keywords: Salted Dried Fish, Moisture, Microbial count. Staphylococcus aureus, sanitation.

INTRODUCTION

Fish is one of the most important sources of animal protein and has been widely accepted as a good protein source and other elements for the maintenance of healthy body (Ravichandran et al., 2012). It also provides a good source of high quality protein and contains many vitamins and minerals. It is an extremely perishable commodity and quality loss can occur very rapidly after catch (Khan and Khan, 2001; Musa et al., 2010; Dewi et al., 2011). Curing of fish is an ancient method of preservation in the world that primarily involves two stages viz, salting and drying (Sanjeev and Surendran, 1996; Anon, 2001). Salted fish products have been shown to be safe for consumption. It decreases the water activity and is governed by various physical and chemical factors
such as diffusion, osmosis and a series of complicated chemical and biochemical processes (Turan et al., 2007). Sun drying of fishes is a simple and the oldest known method of fish preservation. Sun drying method is considered as the least expensive method of fish preservation (Balachandran, 2001). This traditional method is followed for the preservation of fish especially in rural areas (Chakrabarti and Varma, 1999). Traditional drying is often rudimentary and good hygiene is rarely practiced. During the monsoon, when the humidity is high, drying cannot be achieved by traditional methods. By this time, the fish can absorb the moisture and it serves as a habitat for microbial population (Azam, 2002). Salted dried was a major source of animal protein available at cheaper price for the economically weaker sections areas (Prasad et al. 1999). Fish is harvested from relatively cleaner environments but during subsequent handling, bacteria of spoilage type and of public health significance type come in contact with the fish (Chichester and Graham, 1973). Immediate cooling or salting of the catch is more important in tropical conditions because the ambient temperature is high and it leads to rapid spoilage (Jeya et al., 2003).

The quality of salted and sun dried fishes are adversely affected by the occurrence of microorganisms. The presence of the pathogenic loads in dried fishes is acquiring importance in view of the safety and quality of the seafood (Patterson and Ranjitha, 2009). The spoilage indicators and visible fungal attacks caused by microorganisms are known to adversely affect the quality of cured fishes. Growth of fungus caused off flavors, soften the flesh and some can produce potentially dangerous mycotoxins under certain circumstances (FAO, 1982). This causes considerable decrease in the consumption of dried fish. Apart from contaminated salted and dries fish, other common sources of contamination are air and dust in and around fish processing place, contaminated coastal water and soil and unhygienic handling (FAO,1982; Prabhakaran and Gupta, 1990). Many of the bacteria capable of causing disease are considered to be saprophytic in nature but only become pathogenic when fishes are physiologically unbalanced nutritionally deficient, or as a result of other stressors such as poor water quality, overstocking, which allow opportunistic bacterial infections to human beings (Akinjogunla et al., 2011). Curing is a simple and cheap method of processing requiring least technical expertise. Golestan Province is well known for local consumption of salted and dried fishes in Iran.

The objective of the present study was to determine the microbial quality of dried fishes consumed in cities near the Caspian sea in Golestan Province, Iran.

MATERIALS AND METHODS

Sampling
The Sun dried fishes were aseptically collected from the Gomishan and Bandar Torkman shore market on the Caspian Sea, Iran. Then the samples transferred to the Department of Food Science and Technology at Baharan Institute of higher education lab for analysis.

Chemical analysis
The sun dried samples were analyzed for Moisture, pH and salt (sodium chloride) content (AOAC, 1990).

Microbial analysis
The microbiological media and incubation conditions used for enumeration of microorganisms were Plate Count Agar (PCA) for Total Viable Count (at 37ºC, 24 h). Biard Parker agar (BP) was used for counting Staphylococcus aureus (37 ºC, 24-48 h) (BAM, 1995). Yeasts and molds were enumerated using acidified potato dextrose agar (Merck, Germany) after incubating at 30 ºC for 3 days (El ziney and El turkey, 2006). Total psychrophilic bacteria were medium and incubation at 30 enumerated on plate count agar medium after incubation at 5ºC for 7 days as recommended by APHA (1992). Lactic acid bacteria were counted by the pour plate over layer method on MRS medium (Harrigan and Mccane 1976). Enterobacteriaceae were counted on violet red bile glucose agar medium after incubation for 20–24 h at 37 ºC (Roberts et al., 1995). For aerobic spore forming bacteria, the dilutions were pasteurized at 80ºC for 20 min in water bath, then the were plated on nutrient agar medium and incubated at 30ºC for 3 days (Kilinc and Cakli, 2004). Dilution frequency technique was adopted to determine the densities of anaerobic spore forming clostridia, using Cooked Meat Medium (CMM), in 5 tubes for each dilution. The inoculated tubes were sealed with sterile mixture of Vaseline and Paraffin oil in 1:1 ratio and incubated at 35±2ºC for up to 7 days. The presence of clostridia was detected at the end of the incubation period by accumulation of gases pushing the vaspar layer up (Difco, 1974). Total halophilus microorganisms count was also performed using plate count agar (PCA) supplemented with 5% NaCl. The plates were incubated under aerobic condition at 35 ºC for 2 days (Thongthai and Suntinanalert, 1991). Salmonella spp was carried out using the most probable
Table 1. Results of chemical properties of dried fish samples

<table>
<thead>
<tr>
<th>properties</th>
<th>Aghghala</th>
<th>Bandar torkman</th>
<th>Gomishan</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.7(^a)</td>
<td>5.49(^a)</td>
<td>6.07(^a)</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>26(^b)</td>
<td>12.8(^a)</td>
<td>44.4(^c)</td>
</tr>
<tr>
<td>NaCl (%)</td>
<td>4.16(^a)</td>
<td>5.36(^b)</td>
<td>4.66(^b)</td>
</tr>
</tbody>
</table>

Table 2. Results of microbial counts of dried fish samples

<table>
<thead>
<tr>
<th>Properties</th>
<th>Aghghala</th>
<th>Bandar torkman</th>
<th>Gomishan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total count</td>
<td>3.2 \times 10^4(^b)</td>
<td>2.2 \times 10^3(^a)</td>
<td>2.3 \times 10^3(^a)</td>
</tr>
<tr>
<td>Yeast and molds</td>
<td>3 \times 10^1 (^b)</td>
<td>0 (^a)</td>
<td>6 \times 10^2(^c)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>9.8 \times 10^2(^c)</td>
<td>0.7 \times 10^1(^b)</td>
<td>0 (^a)</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>6.7 \times 10^1(^b)</td>
<td>0 (^a)</td>
<td>0 (^a)</td>
</tr>
<tr>
<td>Aerobic spores</td>
<td>3.8 \times 10^1(^a)</td>
<td>6 \times 10^2(^c)</td>
<td>1.2 \times 10^3(^b)</td>
</tr>
<tr>
<td>Anaerobic spores</td>
<td>2 \times 10^1(^a)</td>
<td>5 \times 10^2(^c)</td>
<td>8 \times 10^1(^b)</td>
</tr>
<tr>
<td>Psychrophilic bacteria</td>
<td>3 \times 10^1(^b)</td>
<td>1 \times 10^1(^a)</td>
<td>4 \times 10^1(^c)</td>
</tr>
<tr>
<td>Lactic acid bacteria</td>
<td>2 \times 10^1(^b)</td>
<td>0 (^a)</td>
<td>4 \times 10^1(^c)</td>
</tr>
<tr>
<td>Halophilic microorganisms</td>
<td>2 \times 10^1(^b)</td>
<td>4 \times 10^2(^a)</td>
<td>1.5 \times 10^3(^b)</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0.8 \times 10^1(^b)</td>
<td>0 (^a)</td>
<td>2 \times 10^1(^c)</td>
</tr>
<tr>
<td>Shigella</td>
<td>7 \times 10^1(^b)</td>
<td>0.4 \times 10^1(^a)</td>
<td>1.2 \times 10^2(^c)</td>
</tr>
</tbody>
</table>

Statistical analysis

Data were analyzed using SPSS version 10.05-computer program.

RESULTS AND DISCUSSION

The FAO/WHO Codex Alimentarius Commission (1983) adopted the Recommended International Code of Practice for Salted Fish in December 1979. The Code covers the technological and essential hygienic requirements for the preparation of high-quality salted fish products, but the drying of salted fish is not covered. Pirimiphos methyl has been cleared by FAO/WHO for use on salted dried fish to protect against blowfly infestation during processing and against further insect infestation during storage (Esser et al., 1990). This can increase microbial load in some unclean areas. Results of chemical analysis of samples shown in table 1.

Values of microbiological examinations of salted dried fish samples are presented in Table 2. Results showed that Samples collected from Bandar torkman had lower pH and moisture and higher NaCl in comparison to others, hence, yeasts and mold, Enterobacteriaceae and lactic acid bacteria counts were zero. Halophilus microorganisms and Psychrophilic bacteria were significantly (p>0.05) lower than others and only decrease the total count were not significant (p<0.05). This is agree with Zaki et al. (1976) that reported the total bacterial count decreased after drying, owing to the high salt content and the lack of free water in fish tissues and Coliforms were not present after drying. Also Elmossalami and Sedik (1972) reported total bacterial counts were lower in sand-salted fish than in tin-salted fish. Microbial counts in Gomishan and Aghghala samples were significant difference (p>0.05) due to difference in pH, moisture and NaCl content (except about Halophilus microorganisms that was not significant (p<0.05). Total bacteria count in this study lower than those reported by El- Dengawy et al. (2012) in salted fish samples.

The high content of NaCl in salted fish samples in this study may induce halophillic bacteria, where the total bacteria count increased and reflected on counts of halophilus microorganisms Zaki et al. (1976); Fong and Walsh (1971) obtained viable cultures on salt-agar of nitrate-reducing halo- bacteria and salt-tolerant S. aureus from all samples of Cantonese salt-dried fish that they examined. Onishi et al. (1980) isolated a variety of halophilic bacteria from salted fish, including salmon, salmon roe, codfish, cod roe and guts of cuttlefish. Bacteria isolated from Egyptian sand-salted fish included micrococci, gram-positive bacilli, Proteus vulgaris, P. mirabilis and Aeromonas liquefaciens. All of the same microorganisms except A. liquefaciens were isolated from tin-salted fish; Serratia marcescens, R retgeri, P. morganii, Enterobacter aerogenes and Coryebacterium freundii were isolated from tin-salted fish only.
Yeasts and molds counts in samples collected from Gimishan were high that is due to high moisture content. Species of fungi isolated from Indonesian dry salted fish included Paecilomyces variotii, Eurotium amstelodami, Aspergillus candidus and A. sydowii (Wheeler and Hocking, 1988). Afatoxin B1, produced by the fungi A. flavus and A. parasiticus, was reported in cured fish. Okonkwo and Nwokolo (1978) found a mean aflatoxin B1 concentration of 650 µg/kg in Nigerian dried fish.

Stockfish, a dried imported fish from Scandinavia, contained no aflatoxin. Shank et al. (1977) identified aflatoxins in 5% of 139 samples of dried fish/shrimp purchased in markets in Thailand but in none of 35 samples purchased in Hong Kong. In the contaminated samples, the mean aflatoxin (B1, B2, G1 and G2) concentration was 166 µg/kg. According to Edema and Agbon (2010), the most common source of fish deterioration is fungal, which have the ability to grow on substrates with low water activity down to 0.6 (Thiam, 1993) and are thus important in determining fish quality.

Aerobic spore forming in current study were lower than those reported by Zaki et al. (1976) in salted fishes. Also samples contained Clostridium spp. (anaerobic spores) and these salted fish may be harmful in human nutrition. This results against to EOS (2005a, b and c).

Geetha et al. (2014) isolated Staphylococcus aureus in all dried fish samples and concluded Staphylococcus was the most predominant organisms. Staphylococcus aureus can grow in the presence of salt. Staphylococcus aureus counts in this study was lower than those reported by Goja (2013) about fresh fish. Staphylococcus aureus has also been detected during the process drying and subsequent smoking of eels in Alaska in 1993 (Eklund et al., 2004). Lactic acid bacteria usually sensitive to high concentrations of salt, but in low concentration of NaCl can survive even generated. Villar, Ruiz-Holgado and Sanchez (1985) found that Pediococcus halophilus was a dominant bacterium at the end of the curing process of anchovies, also many microorganisms such as Lactobacillus species were found during fish sauce fermentation (Saisithi et al., 1986; Thongthai et al., 1991; Saisithi, 1994; Thongsanit et al., 2002; Fukami et al., 2004).

Salmonella sp. was not detected in the sample collected from Bandar torkman. But Salmonella contamination was detected in other samples and shigella was observed in all of the samples. The absence of Salmonella was similar to the results of Oulai et al. (2007); Dodds et al. (1992). However, Djinou (2001) found that 0.8% of their samples had Salmonella.

Contamination of fish and fishery products with Salmonella and Shigella has been reported by many researchers (Bandekar et al., 1995, Lyer and Shrivastava 1989a; Ponda, 2002; Sinduja et al., 2011). Incidence of pathogens in the sample of fish market may be attributed to external contamination and poor handling at ambient temperature (Lyer and shrivastava, 1989b). In some of the cases, the food borne illness such as scombroid poisoning is observed in dry fishes mainly due to chemical agent and histamine and it is also called as histamine poisoning. E. coli is responsible for the production of histamine in the dried fishes (Logesh et al., 2012). In rare cases Salmonella and Staphylococcus species produce histamine residue (Huang et al., 2010). So safety measures should be taken to reduce the contaminations and insect infestations.

CONCLUSION

Assessment of the microbiological quality of salted dried fishes sold in the Goestan Province, Iran, showed that the conditions for their production and sale were poor and suggested that producers and vendors were not following good hygiene practices. Some pathogenic microorganisms such as Staphylococcus aureus and Salmonella sp, were identified in the samples analyzed that could be spores of pathogenic Clostridium botulinum type E or Clostridium perfringens. It is therefore important that actions be taken to improve the situation.

REFERENCES

Dodds KL, Brodsky MH, Warburton DW (1992). A retail survey of...

